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Two-dimensional Boussinesq-type depth-averaged equations are derived for describ- 
ing the interactions of weakly nonlinear shallow-water waves with slowly 
varying topography and currents. The current velocity varies appreciably within a 
characteristic wavelength. The effects of vorticity in the current field are considered. 
The wave field is decomposed into Fourier time harmonics. A set of evolution 
equations for the wave amplitude functions of different harmonics is derived by 
adopting the parabolic approximation. Numerical solutions are obtained for shallow- 
water waves propagating over rip currents on a plane beach and an isolated vortex 
ring. Numerical results show that the wave diffraction and nonlinearity are 
important in the examples considered. 

1. Introduction 
The transformation of water waves over varying currents has been studied 

extensively by many researchers using the well-known wave-action equation (e.g. 
Longuet-Higgins & Stewart 1961 ; Bretherton & Garrett 1969 ; Phillips 1966). There 
is an excellent review on this subject by Peregrine (1976). The wave-action equation 
is equivalent to the geometrical ray theory and cannot be applied to the regions near 
caustics where wave diffraction becomes important. Local improvements have been 
developed for various types of caustics for both linear and nonlinear waves (McKee 
1974; Peregrine &, Smith 1975; Smith 1976). On the other hand, Booij (1981), Liu 
(1983) and Kirby (1984) have developed various parabolic wave equations based on 
the linearized theory. I n  these parabolic wave equations, the primary wave 
propagation direction is specified a priori and the wave diffraction in the lateral 
direction is included. Kirby (1986) extended the linear parabolic wave equation 
models to include the nonlinearity of the second-order Stokes waves. The Stokes 
wave theory, however, becomes invalid in the shallow-water region where most 
coastal currents (longshore and rip currents, tidal currents near an inlet or river 
mouth) exist. 

Liu, Yoon & Kirby (1985) developed a parabolic equation model based on the 
Boussinesq equations for shallow-water equations. Their model has been successfully 
used to calculate the transformation of weakly nonlinear shallow-water waves over 
an uneven bottom. The effects of currents were not, however, considered in their 
formulation. In  this paper, we shall derive a new set of Boussinesq equations for the 
wave motion with the effects of currents. The current velocity is assumed to be 
greater than the characteristic wave orbital velocity, but smaller than the wave 
group velocity. The lengthscale of the current variations is assumed to be longer than 
t Present address: Korea Power Engineering Co. Inc., P.O. Box 631, Youngdong, Seoul, Korea. 
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the characteristic wavelength. Following Liu el al.’s (1985) approach and focusing 
only on the wave motion, we apply the parabolic approximation to the new 
Boussinesq equations. A set of nonlinear parabolic wave equations is obtained for the 
amplitudr functions of each harmonic of the wave motion. I n  applying the parabolic 
approximation, the current velocity field i s  specified in such a way that the vorticity 
is allowed in the formulation. 

In the following section, the derivation of the new Boussinesq equations are given. 
These equations describe the full interactions between waves and currents. Assuming 
that the current field is prescribed, the parabolic approximation applied to the wave 
field is discussed in $3. In  the next section two numerical examples: rip currents on 
a plane beach and an isolated vortex ring, are presented. Rip currents are 
components of coastal current systems and could be generated by breaking waves 
with alongshore variations (e.g. Liu & Mei 1975). When a breakwater or a headland 
intercepts longshore currents and causes flow separation, the isolated vortex ring 
exists in the shallow water. Numerical solutions of the present model are compared 
with the ray pattern and the solutions from the linearized theory to illustrate the 
importance of the diffraction and the nonlinearity. 

S.  B. Yoon and P. L.-F.  Liu 

2. Derivation of Boussinesq equations for wave-current interactions 
Peregrine (1967) derived the Boussinesq equations for shallow-water waves 

propagating over a varying depth by integrating the Euler’s equations of motion 
throughout the depth. Using a perturbation method, Madsen & Mei (1969) also 
obtained the same set of Houssinesq equations. These equations do not, however, 
include the effects of currents on waves. In  this section, we follow Phillips’ (1966) 
approach, and derive a new set of Boussinesq equations which include both effects 
of depth variations and varying currents on waves. The magnitude of the current 
velocity is assumed to be stronger than that of the characteristic wave orbital 
velocity but weaker than that of the wave group velocity. The horizontal lengthscales 
of the current and the depth variations are assumed to be longer than the 
characteristic wavelength. 

Consider a flow region bounded by a free surface z’ = c(x’, t ’ )  and a stationary 
bottom, z‘ = -h’(xi), where (i = 1,2) are the horizontal axes and t’ the time. The 
horizontal velocity components are denoted by p;(xl, z’, t ’ )  (i = 1, 2 ) ,  while the vertical 
velocity component is represented by w’(x;, z’, t ’ ) .  Choosing the inverse of a 
characteristic wave frequency, w ’ ,  as the timescale, a characteristic depth, h;, a8 the 
vertical lengthscale, a characteristic wavelength, (ghh)i/w’, as the horizontal 
lengthscale, and a characteristic wave amplitude, ah, as the lengthscale for the free- 
surface displacement, we can define the following dimensionless variables : 

where 

with p‘ being the pressure. Here the quantities with a prime denote the physical 
variables. Two small parameters, E and p2, are the measures of nonlinearity and 
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frequency dispersion, and are assumed to be of same order of magnitude. The wave 
orbital velocity, of the order of magnitude O(c(ghh);) and is, therefore, weaker than 
the leading-order current velocity which is O(p(ghk)i) as indicated in (2.1).  The 
horizontal lengthscales for depth and current variations are to be specified. 

The dimensionless continuity equation for an incompressible fluid flow reads : 

where the usual summation convention over repeated indices is used. The horizontal 
and the vertical momentum equations can be expressed in the following 
dimensionless forms : 

On the free surface, z = €5, the kinematic boundary condition requires 

a< a5 -+pqi--w = 0, Z = €5. 
at axi 

The dynamic condition demands the continuity of the pressure across the free 

(2.7) 
surface. It is assumed that 

Along the rigid bottom, z = - h, the no-flux boundary condition is used. Thus 

p = 0, Z = E g .  

In  the present analysis the current field is allowed to be rotational. However, the 
horizontal velocity components are almost uniform throughout the depth. The 
vertical vorticity components are required to satisfy the following condition : 

a42 aw 
aZ axi --pc- = O(p2e,p4) (i = 1,2) (2.9) 

Following Phillips' (1966) approach, we integrate the continuity equation, ( 2 . 3 ) ,  
and the horizontal momentum equations, (2.4), from the bottom to the free surface 
to get 

(2.10) 

in which i , j  = 1,2 and the boundary conditions (2.6)-(2.8) have been employed. The 
pressure field can be obtained by integrating the vertical momentum equat.ion, (2.5), 

(2.12) 

The free-surface boundary conditions have been used in the integration. Similarly, 
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the vertical velocity component a t  a certain water depth can be obtained by 
integrating the continuity equation, (2.3), from x = -h to z. Thus 

(2.13) 

in which the bottom boundary condition, (2.8), has been applied. 
Up to this point, no approximation has been used in obtaining the vertically 

integrated equations, (2.7)-(2.13). These equations are exact. The details of the 
integration procedures can be found in Phillips (1966), Liu & Mei (1975) and Yoon 
(1987). In  these earlier works, scales for the velocity field are different from those 
specified in (2.1). The coefficients, in terms of small parameters, in the resulting 
equations are different from the present equations. The integration procedures and 
the forms of the resulting equations remain the same. 

To proceed to further analysis, several approximations and simplifications are 
adopted. The velocity field is assumed to consist of a slowly time-varying current 
velocity component and a fluctuating wave component. The current velocity is of the 
magnitude of O(p(ghL):), but the wave orbital velocity is of O(E(gh;):). Denoting by qi 
the horizontal components of the current velocity and iji the horizontal components 
of the wave orbital velocity, we can decompose the velocity field as 

The corresponding free-surface displacements can be written as 

(2.14) 

(2.15) 

We further assume that the lengthscale of the depth variations as well as of the 
current variations is longer than the characteristic wavelength. Thus 

The current field varies slowly in time, i.e. 

( 2 . 1 6 ~ )  

(2.16b) 

Applying the order of magnitude arguments, (2.14) and (2.16u), in the continuity 
equation, (2.3), we find that the dimensionless vertical velocity component, w, is 
indeed of O( 1 ) .  Invoking the irrotationality condition, (2.9), we determine that 
the horizontal velocity components are uniform throughout the entire depth up to 
O(pu2, E ) ,  i.e. 

(2.17) 

where qa can be viewed as the horizontal velocity components on the free surface. 
Substituting (2.17) into (2.13), we find that the approximate vertical velocity 
component is 

(2.18) 
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Similarly, the pressure field, (2.12) can be approximated as 

Substitutions of (2.17) and (2.18) into the equation above lead to 

[P I ,  = (€5-x)+€p g- - +z-  h- [ a?:) L,( a::)] 

The approximated horizontal velocity components can be obtained by integrating 
(2.9) from z = z to z = c<, i.e. 

in which (2.18) has been employed. 
Now we introduce the depth-averaged horizontal velocity components as 

(2.20) 

(2.21) 

The relationship between the depth-averaged velocity, u,, and the free-surface 
velocity, qf, can be found by substituting (2.20) into (2.21). Thus 

(2.22) 

Finally, using (2.19)-(2.22), we can rewrite the continuity equation, (2.10) and the 
momentum equation, (2.11), in terms of the depth-averaged velocity, ui, in the 
following forms : 

(2.23) 
a6 l a  
-+--[(h+E6)U1] = 0, 
at paxi 

a a e a6 - [ (h  + €6) U j ]  + p - [(h + €6) u, U j ]  + - (h  + 4.) - + E 
at axi P axj 

= O(p5) ( i , j  = 1,2).  (2.24) 

While the continuity equation, (2.23), remains exact, the momentum equations, 
(2.24), are approximated. 

Similarly to (2.14) and (2.15), we decompose the depth-averaged horizontal 
velocity components and the free-surface displacement into the current component 
and the wave component, i.e. 

ut = u,, + - uwt, (2.25) 

6 = P2 ,Q+<w> (2.26) 

€ 

ru. 
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where the subscripts c and w denote the current component and the wave 
component, respectively. The current components are the remainders of the time 
average of ui and f over a wave period. Substituting (2.25) and (2.26) into the 
continuity equation, (2.23), and taking a time average over a wave period, we obtain 

(2.27) 

in which ( ) represents the time average. The term (<wuwt) is the Eulerian mass 
transport velocity component due to wave fluctuations. It is convenient for some 
problems to introduce the total current field velocity including the mass transport, 
i.e. 

The continuity equation, (2.27), can be rewritten in terms of uti as 

aL-c tc a 
at axi 
-+--[Du,,] = 0, 

(2.28) 

(2.29) 

where D = h+,u2fc is the total mean depth. 

after taking the time average. Thus 
The momentum equations for the total current field can be obtained from (2.4) 

(2.30) 

where Sij = h(uwi uwj)  + t<G) aij, (2.30) 

is the radiation stress tensor first given by Longuet-Higgins & St,ewart (1960) and 6, 
is the Kronecker Delta function. Equation (2.30) can be further simplified, when 
(2.29) is used. Hence, 

(2.31) 

The time- and depth-averaged continuity equation and momentum equations are 
essentially the same as those derived by Phillips (1966) and Liu & Mei (1975). The 
present equations are, however, obtained specifically for shallow-water waves. 

Subtracting the time- and depth-averaged equation, (2.29), and the momentum 
equations, (2.30), from (2.23) and (2.241, respectively, we obtain the corresponding 
continuity equation and momentum equations for the wave (fluctuation) com- 
ponents : 

(2.32) 
a f W  a 
-+-“(D+€<,)Uwi+,u~wuU,i-e(~wuw~)] = 0 (i = 1,2) at ax, 

(2.33) 

Equations (2.32) and (2.33) represent a new set of Boussinesq equations for wave 
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motion including the effects of currents. If the current velocity vanishes, the above 
equations reduce to Peregrine's (1967) Boussinesq equations. 

The governing equations for the current field and the wave field, (2.29), (2.31), 
(2.32) and (2.33), are coupled, The coupling is, however, rather weak. From the time- 
and depth-averaged momentum equation, (2.31), the wave-induced mean currents 
resulting from the radiation stresses are O(s,p2), since both the current velocity and 
the radiation stresses are slowly varying functions in xi. These wave-induced mean 
currents affect the wave field through the inertia term in the momentum equation, 
i.e. the second term in (2.33). Because the inertia term is linear in uci, the 
modifications of wave-induced currents to the wave field are equivalent to the 
Doppler-shift effects. The complete solutions of the coupled system can be obtained, 
in principle, by an iterative numerical scheme. The first step of the iterative scheme 
is to calculate the current field without considering the effect of the wave field, i.e. 
ignoring the radiation stresses. The computed current velocity field is then used in 
(2.32) and (2.33) to find the wave field. The current field can be updated by re-solving 
(2.29) and (2.31) with the effects ofthe wave field. The wave field can also be updated 
if we solve (2.32) and (2.33) again with the new current field. The procedure can be 
repeated until the converged solutions are obtained. Some preliminary numerical 
results of this kind have been reported by Yoon (1987). 

As pointed out by Yoon (1987) and others, the task of solving the current field 
including the effects of radiation stresses is by no means a trivial exercise. In  this 
paper, we focus our attention on the solutions of the wave field over a prescribed 
current velocity field. Retaining all terms in (2.32) and (2.33) allows one to examine 
t,he refraction and diffraction of weakly nonlinear waves over a shear current. The 
solution technique for (2.32) and (2.33) can also be used as a module in the iterative 
scheme for the complete wavecurrent interactions. 

3. Nonlinear mild-slope equations and parabolic approximation 
In  the remainder of this paper, we further simplify the situation by assuming 

that the current field is steady state and the lengthscale of the depth variations is 
longer than that of the current variations, i.e. O(lVh1) - O(p2). Moreover, for 
convenience of presentation, vector notation will be used. The horizontal 
coordinates (z, y) replace (xl, z2) and the horizontal gradient is, therefore, defined as 
V = (a/ax,, a/ax,) = (a/ax, slay). The continuity equation and momentum equations 
for the wave field, (2.32) and (2.33) can be rewritten as 

(3.1) 
a<, -+ v - [(D +4,) u, +PCW u, -4c, u,)l = O(P"? at 

~+~u~~VU,+~U,~QU,+~U,~VU,-~(U,~VU,) au, 
at 

+V<w-&2D2V -(V*U,)+PU,.V(V*U, = O(p4). (3.2) 
[:t 1 

Note that in (3.2) D replaces h. 

surface displacement can be expressed as 

u, = $Cu,(x)e-int, n = + I ,  k2, ..., 

c w = + X C n ( ~ ) e - i n t ,  n = & l , f 2  ,..., 

Consider the wave field which is periodic in time. The velocity vector and the free- 

n (3.3) 

n 
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where (<-n, u - ~ )  is the complex conjugate of (cn, un).  The zeroth component (n = 0) 
is not included in (3.3) because it has been accounted for in the mean current field. 
Substituting (3.3) into (3.1) and (3.2) and collecting the different Fourier harmonics, 
we obtain for the nth harmonic: 

-in<, + V .  (Du,) + p V .  ([, ut)  +$c C V. (6 u , - ~ )  = O(p4) ,  (3.4) 
s+n 

-inu,+V<n+p(ut.Vu,+u,.Vu,)+~E C us.Vu,-, 
s+n 

+ inp2la2 V(V.u,) -h3D2 V[u, - V(V.u,)] = O(p4), (3.5) 

where n = & 1, k2, . . . , and 5 = f 1, f 2 ,  .. . . Multiplying (3.5) by D and taking the 
divergence of the resulting equation, we can combine (3.4) and (3.5) to get 

V.(DV[,)+n2[,+inp(V.u,) <, +inpV<,.uu, 

-h2n2D2V2<,-2inp3~5D2V2(ut.V<,) +pV.[D(u,.Vu, +u,.Vu,)] 

+$ Z: [DV.(us.Vu,_,)+inV.(<,un-,)] = O(p4). (3.6) 

Denoting by (U,  V )  the total velocity components in the x- and y-direction, and 
assuming that the primary wave propagation direction coincides with the x-axis, we 
are interested in the shear current field so that 

s+n 

The lengthscales for the current velocity components given in (3.7) are the same as 
those specified in the original derivation, i.e. (2.16a). On the other hand, the 
lengthscales shown in (3.8) are required for the purpose of adopting the parabolic 
approximation. Because the primary wave propagation direction is in the x- 
direction, the lengthscale of <, in the x-direction is the characteristic wavelength, 
while the free-surface variation in the y-direction must be slowly varying: 

Using (3.7), (3.8) and (3.9), one can simplify (3.6) to give 

ipD a3<, U- av a -+- 

(3.9) 
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which can be considered as a nonlinear mild-slope equation for the nth harmonic. To 
solve the above equation one must prescribe the boundary conditions along the 
boundaries. Furthermore, since the lengthscale of variation of gn is a typical 
wavelength, the required numerical discretization and computations might be costly. 
The alternative is to make further approximation and to rewrite (3.10) in a parabolic 
equation form. 

Consider a slowly varying amplitude function $% such that 

5, = $n(x, y)einJd-adx, (3.11) 

where d(x) is a reference depth varying slowly in the x-direction. O(Vh) - O(p2)  and, 
from (3.7) and (3.8), the amplitude function, $n ,  varies faster in the y-direction than 
in the x-direction. Thus, the usual parabolic approximations are adopted : 

Substituting (3.11) and (3.12) into (3.10) and keeping all the terms up to O(,u3), one 

where Dld = 1 + O(p2) has been employed. The above equation is a parabolic wave 
equation describing the wave propagation over a varying current and a varying 
depth. 

If the effects of current field are ignored, (3.13) can be simplified to 

E 
= - X n(n+s)$8$n-s+O(p4), (3.14) 

2 h s + n  

which has also been derived by Liu et al. (1985). 

4. Numerical examples 
To find numerical solutions for the wave field, the Crank-Nicolson method is used 

to rewrite (3.13) in a finite-difference form. The forward-difference is used in the x- 
direction and the centred-difference is used in the y-direction. Denoting T,I?~,~ as the 
nth harmonic amplitude function a t  x (=  jAx) and y ( = kAy), we can rewrite (3.13) 
in the following form : 
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where (4.2a, 6 )  

The right-hand side of (4.1) is nonlinear and has been linearized for computational 
purposes in the following way: 

B( )k  = ( )k+ l - (  l k - 1 ,  s2( )k = ( )k+l-2(  ) k + (  )k-l '  

(4.3) J + I  m $:ti $p-'s, k = ($:, k )  ($p-'s, k ) m f l ?  

where the superscript m denotes the number of iterations. The initial guesses, m = 
0, are obtained from the previous x-level solutions, i.e. ($:;)' = $:, k. The iteration 
process is stopped and the converged solution is obtained if the relative error is less 
than a predetermined small number, i.e. 

(4.4) 

Equation (4.1) results in an asymmetrical banded matrix with a band width 2N+ 1,  
where Nis the total number of harmonics used in computations. The Crank-Nicolson 
method is unconditionally stable for the linear version of (4.1). The method seems to 
be free of stability problems for the nonlinear problems studied here. 

Numerical resuts are pbtained for t,he refraction and diffraction of cnoidal waves 
over two different current fields: rip currents on a uniform slope and an isolated 
vortex ring on a constant depth. In  both cases, the current velocity is prescribed ; the 
effects of waves on current are not taken into account. 

4.1. Rip currents 

Arthur (1950) studied wave propagation over rip (jet-like) currents using a linear 
wave ray theory. Because of wave refraction, wave ray crossings occur along the 
centreline of the rip currents. The ray theory becomes invalid in the neighbourhood 
of wave crossings. In  this section, we re-examine Arthur's wave-current interaction 
problems by using the nonlinear parabolic equations, (3.13). The effects of the 
current strength and the lengthscales of current variations on waves are investigated. 
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(2n)k, Coastline ( x  = xo) 1 

FIaum 1. Definition sketch of Arthur’s (1950) rip current. 

Case Fr c4 E P2 
1 0.1177 0.798 0.01 0.361 
2 0.1177 0.798 0.02 0.361 
3 0.2353 0.798 0.01 0.361 
4 0.2353 0.798 0.02 0.361 
5 0.2353 1.596 0.01 0.361 
6 0.2353 1.596 0.02 0.361 

TABLE 1 .  Parameters for each rip currents 

Arthur’s (1950) rip current velocity components can be recast in the following 

(4.5a) u = - c (x - x) e-”+’12 e-8’12 dimensionless form : 
2 0  

(4.56) 

and x = xo is the location of the coastline. The bottom topography is a uniform beach 

( 4 . 5 d )  
and can be expressed as 

In Arthur’s study, the beach slope is fixed as s = hJxh = 1/50. Note that Arthur’s 
current velocity field satisfies only the continuity equation with Q = 0. 

As shown in figure 1, the tip curre,nt pattern is determined by three parameters : Fr,  
C, and C,. The strength of the tip current is controlled by the Froude number Fr, 
while C, gives the location of the on-offshore maximum velocity and C4 governs the 
width of the rip current. I n  our numerical computations, C, is fixed a t  7.979 and six 
different combinations of parameters are used. These parameters are listed in table 1.  
The rip current velocity reported in Arthur’s paper corresponds to F r  = 0.2353, 
C, = 0.798 and C, = 7.979. We remark here that for all cases the computed maximum 
current velocity is smaller than the shallow-water phase velocity and the width of the 
rip currents is of the same order of magnitude as a typical wavelength. Along the 
initial (offshore) phaseline the nonlinearity parameter, E ,  is one order smaller than ,u2. 

h = (xo-2)/x0. 
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FIGURE 2. Wave ray pattern over rip current yith Fr = 0.2353, C, = 1.596 and C, = 7.979; 
. . . . , contour lines of ILl = lUmaxl/e~ and ~U,,J/e; -, wave rays. 

Thc Boussinesq equations are still valid and are reduced to linear dispersive wave 
equations. As waves propagate into shallower water and encounter the current, the 
nonlinearity grows and the Boussinesq equations are fully utilized. 

The water depth along x’ = 0 is hi = 5.74 m. Therefore the coastline is locatcd at  
5 = 287 m, since the beach slope is 1/50. The dimensionless coastline is xo = 30.0. 
The normal incident wave has a wave period of 8 s  ( w ’ =  0.785s-’). The first- 
harmonic amplitudes, ah, are 0.0574 m and 0.1148 m along x = 0 corresponding to 
s = 0.01 and 0.02, respectively. Stokes wave theory is used to obtain initial wave 
amplitudes for higher harmonics. 

To illustrate the wave refraction pattern, the wave ray pattern over the current 
field with Fr = 0.2353, C ,  = 1.596, C, = 7.979 is given in figure 2 .  Noted tahat the 
maximum current velocity occurs a t  x x 22. It is clear that caustics appear over the 
current field and the diffraction effects should not be ignored. 

Numerical computations were carried out for all six cases listed in table 1 as well 
as for the linearized problem where only the first harmonic solution (n = 1 )  of (3.13) 
is obtained without the nonlinear terms. Wave height distributions along different 
cross-sections are plotted in figure 3 for different cases. Since the centreline of the 
currents is located a t  y = 0, and along cross-section y = 15 the on-offshore current 
velocity is almost zero, the influence of the current on waves is negligible along 
y = 15; the wave height variations along this cross-section represent the shoaling of 
incident waves with different initial amplitudes. The shoaling factor, HIH, ,  is in 
general higher for nonlinear waves (larger s-values in figure 3). A snapshot of the free- 
surface profile along y = 15 is shown in figure 4;  the nonlinearity increases the 
sharpness (peakness) of the surface profiles as well as the phase velocity. Numerical 
computations are stopped when a wave breaking condition, H / h  > 0.8, is satisfied. 
At the breaking point the local nonlinearity parameter s takes a value of 0.4, which 
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2 -  

15 0 -15,O 10 20 30 

Y X 

FIGURE 3. Normalized wave height H / H ,  along z = const. (left) and y = const. (right), comparison 
between linear and nonlinear solutions; -, linear; . . . . , E = 0.01 ; ---, E = 0.02; for (a) 
Fr = 0.1 177, C, = 0.798 ; ( b )  Fr = 0.2353, C, = 0.798; and ( c )  Fr = 0.2353, C, = 1.596. 

4 1  E = O  

-4  t -I 
I I I I I 

4 0.01 1 

- 4  t 
1 I 

0 10 20 30 
X 

FIGURE 4. Free-surface profile c,,, along y = 15 for the case Fr = 0.2353, C, = 0.798. 
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FIGURE 5.  Free-surface profile 6 along y = 0 for the case Fr = 0.2353, C, = 0.798. 

X 

is no longer very small. Therefore, strictly speaking, the Boussinesq approximation 
becomes invalid before the breaking point. 

Because of the refraction of incident waves over the currents, waves are focused 
along the centreline (y = 0 ) .  Two symmetric shadow regions, roughly along 
y = f2 .5 ,  are created, where wave heights are less than the shoaling wave heights 
(see figure 3 ) .  The rapid changes of wave heights in the y-direction confirm the 
importance of the diffraction. A significant increase in wave heights along y = 0 
appears as the result of the increase in current velocity. By doubling the on-offshore 
current width and keeping the same maximum speed, the wave height distributions 
do not change very much (figure 3b,  c ) .  This is partly because the alongshore 
(y-direction) velocity component is increased proportionally (see figure l), which 
enhances the wave refraction toward the centreline. 

For the cases where the Froude number is 0.2352 (figure 3 b, c) the normalized wave 
heights along the centreline appear to be insensitive to the incident wave heights, up 
to the breaking point. However, if one examines the free-surface profiles (see figure 
5), linear and nonlinear theories give completely different results. This is because the 
major nonlinear effects are the amplifications of the second harmonics. As long as the 
first and the second harmonics are in phase, this will not change the wave height but 
it will increase the wave crests and decrease the wave troughs. 

The normalized wave amplitudes for each harmonic are plotted in figure 6 for the 
cases of E’r = 0.1177. Through nonlinearity, wave energy is transferred from the first 
harmonic to higher harmonics. The rate of energy transfer is higher when the 
nonlinearity is stronger. As shown in figure 6, the wave amplitudes of the first 
harmonic for c = 0.02 are smaller than those for c = 0.01. Similar patterns are 
observed for other cases with different Froude numbers. 
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FIGURE 7 .  Definition sketch and velocity profile of vortex ring. 

4.2. Vortex ring 
The refraction and diffraction of cnoidal waves over an isolated vortex ring is 
examined here. For a uniform water depth the current velocity and the free-surface 
displacement in terms of polar coordinates for a vortex ring can be written as (Mapp, 
Welch & Munday 1985) 

v, = 0, (4.6a) 

(4.6b) 

( 4 . 6 ~ )  

where V, and V, are the velocity componenta in the r-  and &directions respectively. 
In (4.6) the constant coefficients C,,  C,,  R,, R,, R, and N determine the shape and the 
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FIGURE 9. Wave ray pattern over vortex ring. 

strength of the vortex ring. As shown in figure 7,  C, represents the maximum speed 
and R, denotes the lengthscale of current variations. 

In  thc present study, a clockwise vortex ring centred a t  (xo,yo) is simulated on a 
constant watcr depth. The following numerical data are uscd for computations : 

(4.7) I x,, = 25, yo = 0, C,  = 0.3092, C, = 0.9, 

R, = 6 ~ ,  R, = 11.222, R, = 4 ~ ,  R, = 4.141, N =  2 .  
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The current profiles and the corresponding free-surface set-down are shown in figure 
8. The incident waves are described by uniform cnoidal waves with wave height 
Hh = 2 m and wave period, !l" = 19.43 s. The constant depth is = 10 m. The 
amplitudes for each harmonic are: $; = 0.81701 m, $; = 0.40683 m, $; = 0.16197 
m, $; = 0.05756 m, = 0.019 17 m, $: = 0.006 10 m, $; = 0.001 86 m. The cor- 
responding dimensionless parameters E and ,u2 take the values 0.093 and 0.107, 
respectively. 

Thc wave ray pattern is shown in figure 9. On the left side of the vortex ring waves 
and currents move in the same direction. Therefore, wave rays diverge. On the other 
hand, waves and currents move in the opposite directions on the right side of the 
vortex ring. Consequently, wave rays converge in this neighbourhood. Outside the 
vortex ring, wave rays remain in straight lines. Wave ray crossings occur behind 
the vortex ring; a shadow zone is created behind the left side of the vortex ring. 
The wave ray theory cannot be used to calculate the wave height distribution. 

Numerical computations are carried out by solving (3.13). The normalized wave 
heights along six cross-sections are shown in figure 10. For comparison numerical 
solutions based on the linearized theory, calculating only the first-harmonic 
amplitude without nonlinear terms, are also plotted in the figure. The development 
of the shadow zones and the focal zones is clearly illustrated. I n  the focal zones the 
wave heights predicted by the nonlinear theory are lower than those predicted by 
linear theory. The nonlinearity enhances the diffraction which transfers wave energy 
in the lateral direction. Wave amplitudes of each harmonic from the nonlinear theory 
are shown in figure 11 for each cross-section. 
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FIQURE 11. Wave amplitudes of each harmonic I$,l along z = const. 
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FIGURE 13. Contour plots of instantaneous free-surface displacements over a vortex ring, 
( a )  linear theory and ( b )  noniinear theory. 
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The instantaneous free-surface profiles along y = - 50, - 10, and 10 are plotted in 
figure 12. Along y = -50 the effects of the current are negligible; the free-surface 
profiles are the same as those of the incident waves. The cnoidal waves have slightly 
faster phase speed than the small-amplitude waves. The cross-section y = - 10 
intersects the focal zone. The wave heights are higher than the incident wave heights. 
The phase speed is slower than that of the incident waves because the currents move 
in the opposite direction to the wave propagations. Along the cross-section y = 10, 
the amplitudes are small because of the effects of the shadow zone. Thc phase speeds 
of both linear and nonlinear waves are faster than those of incident waves since the 
current velocity is in the same direction as the wave propagation. 

The contour plots of the instantaneous free-surface displacements are presented in 
figure 13 for both linear and nonlinear theories. The increment of contour lines is 0.5. 
After waves pass the vortex ring, they should recover and become plane waves again. 
As evident in figure 13, the nonlinear waves recover their plane wave forms faster 
than the linear waves. 

5. Concluding remarks 
A new set of Boussinesq equations have been derived in this paper, which can be 

used to study the full interactions between waves and currents in shallow water. The 
current velocity is stronger than the wave orbital velocity, but weaker than the 
phase velocity. The lengthscale of the current variations is longer than the 
characteristic wavelength. While the horizontal velocity components are nearly 
uniform throughout the entire depth, the current field is allowed to be rotational. 

In  computing the wave field, the parabolic approximation has been used. The 
resulting system of nonlinear parabolic wave equations represents the extension of 
earlier work by Liu et al. (1985), who did not consider currrents. Numerical results 
for thc wave field are obtained with a prescribed current field. Consequently, the full 
interaction problem is not presented in this paper. However, the present numerical 
results demonstrate clearly the nonlinear diffraction pattern of shallow-water waves 
over a shear current. 

Yoon (1987) has developed an iterative numerical scheme for solving the full 
interaction problems. The same solution technique for the wave field as shown in this 
paper has been used in each iteration step. Although some preliminary results have 
been reported by Yoon (1987), it is clear that a comparable and efficient numerical 
scheme for computing the current field is still wanting. 

This research was supported by the New York Sea Grant Institute. The 
manuscript was written when one of us (P.L.F.L.)  was visiting the Technical 
University of Denmark as a Visiting Professor. Discussions with M. W. Dingeman 
have been very fruitful. Reviewers’ comments on an early version of the manuscript 
are also appreciated. 
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